Package opengradient
OpenGradient Python SDK for interacting with AI models and infrastructure.
Submodules
Functions
Create model
def create_model(model_name: str, model_desc: str, model_path: str = None)
Create a new model repository.
Arguments
model_name
: Name for the new model repositorymodel_desc
: Description of the modelmodel_path
: Optional path to model file to upload immediately
Returns
dict: Creation response with model metadata and optional upload results
Raises
RuntimeError
: If SDK is not initialized
Create version
def create_version(model_name, notes=None, is_major=False)
Create a new version for an existing model.
Arguments
model_name
: Name of the model repositorynotes
: Optional release notes for this versionis_major
: If True, creates a major version bump instead of minor
Returns
dict: Version creation response with version metadata
Raises
RuntimeError
: If SDK is not initialized
Generate image
def generate_image(model: str, prompt: str, height: int | None = None, width: int | None = None) ‑> bytes
Generate an image from a text prompt.
Arguments
model
: Model identifier (e.g. "stabilityai/stable-diffusion-xl-base-1.0")prompt
: Text description of the desired imageheight
: Optional height of the generated image in pixelswidth
: Optional width of the generated image in pixels
Returns
bytes: Raw image data as bytes
Raises
RuntimeError
: If SDK is not initializedOpenGradientError
: If image generation fails
Infer
def infer(model_cid, inference_mode, model_input, max_retries: int | None = None)
Run inference on a model.
Arguments
model_cid
: CID of the model to useinference_mode
: Mode of inference (e.g. VANILLA)model_input
: Input data for the modelmax_retries
: Maximum number of retries for failed transactions
Returns
Tuple[str, Any]: Transaction hash and model output
Raises
RuntimeError
: If SDK is not initialized
Init
def init(email: str, password: str, private_key: str, rpc_url='http://18.218.115.248:8545', contract_address='0x3fDCb0394CF4919ff4361f4EbA0750cEc2e3bBc7')
Initialize the OpenGradient SDK with authentication and network settings.
Arguments
email
: User's email address for authenticationpassword
: User's password for authenticationprivate_key
: Ethereum private key for blockchain transactionsrpc_url
: Optional RPC URL for the blockchain network, defaults to mainnetcontract_address
: Optional inference contract address
List files
def list_files(model_name: str, version: str) ‑> List[Dict]
List files in a model repository version.
Arguments
model_name
: Name of the model repositoryversion
: Version string to list files from
Returns
List[Dict]: List of file metadata dictionaries
Raises
RuntimeError
: If SDK is not initialized
Llm chat
def llm_chat(model_cid: opengradient.types.LLM, messages: List[Dict], inference_mode: str = 0, max_tokens: int = 100, stop_sequence: List[str] | None = None, temperature: float = 0.0, tools: List[Dict] | None = None, tool_choice: str | None = None, max_retries: int | None = None) ‑> Tuple[str, str, Dict]
Have a chat conversation with an LLM.
Arguments
model_cid
: CID of the LLM model to usemessages
: List of chat messages, each with 'role' and 'content'inference_mode
: Mode of inference, defaults to VANILLAmax_tokens
: Maximum tokens to generatestop_sequence
: Optional list of sequences where generation should stoptemperature
: Sampling temperature (0.0 = deterministic, 1.0 = creative)tools
: Optional list of tools the model can usetool_choice
: Optional specific tool to usemax_retries
: Maximum number of retries for failed transactions
Returns
Tuple[str, str, Dict]: Transaction hash, model response, and metadata
Raises
RuntimeError
: If SDK is not initialized
Llm completion
def llm_completion(model_cid: opengradient.types.LLM, prompt: str, inference_mode: str = 0, max_tokens: int = 100, stop_sequence: List[str] | None = None, temperature: float = 0.0, max_retries: int | None = None) ‑> Tuple[str, str]
Generate text completion using an LLM.
Arguments
model_cid
: CID of the LLM model to useprompt
: Text prompt for completioninference_mode
: Mode of inference, defaults to VANILLAmax_tokens
: Maximum tokens to generatestop_sequence
: Optional list of sequences where generation should stoptemperature
: Sampling temperature (0.0 = deterministic, 1.0 = creative)max_retries
: Maximum number of retries for failed transactions
Returns
Tuple[str, str]: Transaction hash and generated text
Raises
RuntimeError
: If SDK is not initialized
Login
def login(email: str, password: str)
Login to OpenGradient.
Arguments
email
: User's email addresspassword
: User's password
Returns
dict: Login response with authentication tokens
Raises
RuntimeError
: If SDK is not initialized
New workflow
def new_workflow(model_cid: str, input_query: Dict[str, Any] | opengradient.types.HistoricalInputQuery, input_tensor_name: str, scheduler_params: Dict[str, int] | opengradient.types.SchedulerParams | None = None) ‑> str
Deploy a new workflow contract with the specified parameters.
This function deploys a new workflow contract and optionally registers it with the scheduler for automated execution. If scheduler_params is not provided, the workflow will be deployed without automated execution scheduling.
Arguments
model_cid
: IPFS CID of the modelinput_query
: Dictionary or HistoricalInputQuery containing query parametersinput_tensor_name
: Name of the input tensorscheduler_params
: Optional scheduler configuration: - Can be a dictionary with: - frequency: Execution frequency in seconds (default: 600) - duration_hours: How long to run in hours (default: 2) - Or a SchedulerParams instance If not provided, the workflow will be deployed without scheduling.
Returns
str: Deployed contract address. If scheduler_params was provided, the workflow will be automatically executed according to the specified schedule.
Read workflow result
def read_workflow_result(contract_address: str) ‑> Dict[str, str | Dict]
Reads the latest inference result from a deployed workflow contract.
This function retrieves the most recent output from a deployed model executor contract. It includes built-in retry logic to handle blockchain state delays.
Returns
Dict[str, Union[str, Dict]]: A dictionary containing: - status: "success" or "error" - result: The model output data if successful - error: Error message if status is "error"
Raises
RuntimeError
: If OpenGradient client is not initialized
Run workflow
def run_workflow(contract_address: str) ‑> Dict[str, str | Dict]
Executes the workflow by calling run() on the contract to pull latest data and perform inference.
Returns
Dict[str, Union[str, Dict]]: Status of the run operation
Upload
def upload(model_path, model_name, version)
Upload a model file to OpenGradient.
Arguments
model_path
: Path to the model file on local filesystemmodel_name
: Name of the model repositoryversion
: Version string for this model upload
Returns
dict: Upload response containing file metadata
Raises
RuntimeError
: If SDK is not initialized
Classes
LLM
class LLM(*args, **kwds)
Enum for available LLM models
Variables
static
HERMES_3_LLAMA_3_1_70B
static
LLAMA_3_2_3B_INSTRUCT
static
META_LLAMA_3_1_70B_INSTRUCT
static
META_LLAMA_3_8B_INSTRUCT
static
MISTRAL_7B_INSTRUCT_V3
TEE_LLM
class TEE_LLM(*args, **kwds)
Enum for LLM models available for TEE execution
Variables
- static
META_LLAMA_3_1_70B_INSTRUCT