Skip to content

Package opengradient

OpenGradient Python SDK for interacting with AI models and infrastructure.

Submodules

  • alphasense: OpenGradient AlphaSense Tools
  • llm: OpenGradient LLM Adapters

Functions

Create model

python
def create_model(model_name: str, model_desc: str, model_path: str = None)

Create a new model repository.

Arguments

  • model_name: Name for the new model repository
  • model_desc: Description of the model
  • model_path: Optional path to model file to upload immediately

Returns

dict: Creation response with model metadata and optional upload results

Raises

  • RuntimeError: If SDK is not initialized

Create version

python
def create_version(model_name, notes=None, is_major=False)

Create a new version for an existing model.

Arguments

  • model_name: Name of the model repository
  • notes: Optional release notes for this version
  • is_major: If True, creates a major version bump instead of minor

Returns

dict: Version creation response with version metadata

Raises

  • RuntimeError: If SDK is not initialized

Generate image

python
def generate_image(model: str, prompt: str, height: int | None = None, width: int | None = None) ‑> bytes

Generate an image from a text prompt.

Arguments

  • model: Model identifier (e.g. "stabilityai/stable-diffusion-xl-base-1.0")
  • prompt: Text description of the desired image
  • height: Optional height of the generated image in pixels
  • width: Optional width of the generated image in pixels

Returns

bytes: Raw image data as bytes

Raises

  • RuntimeError: If SDK is not initialized
  • OpenGradientError: If image generation fails

Infer

python
def infer(model_cid, inference_mode, model_input, max_retries: int | None = None)

Run inference on a model.

Arguments

  • model_cid: CID of the model to use
  • inference_mode: Mode of inference (e.g. VANILLA)
  • model_input: Input data for the model
  • max_retries: Maximum number of retries for failed transactions

Returns

Tuple[str, Any]: Transaction hash and model output

Raises

  • RuntimeError: If SDK is not initialized

Init

python
def init(email: str, password: str, private_key: str, rpc_url='https://eth-devnet.opengradient.ai', contract_address='0x8383C9bD7462F12Eb996DD02F78234C0421A6FaE')

Initialize the OpenGradient SDK with authentication and network settings.

Arguments

  • email: User's email address for authentication
  • password: User's password for authentication
  • private_key: Ethereum private key for blockchain transactions
  • rpc_url: Optional RPC URL for the blockchain network, defaults to mainnet
  • contract_address: Optional inference contract address

List files

python
def list_files(model_name: str, version: str) ‑> List[Dict]

List files in a model repository version.

Arguments

  • model_name: Name of the model repository
  • version: Version string to list files from

Returns

List[Dict]: List of file metadata dictionaries

Raises

  • RuntimeError: If SDK is not initialized

Llm chat

python
def llm_chat(model_cid: opengradient.types.LLM, messages: List[Dict], inference_mode: str = 0, max_tokens: int = 100, stop_sequence: List[str| None = None, temperature: float = 0.0, tools: List[Dict] | None = None, tool_choice: str | None = None, max_retries: int | None = None) ‑> Tuple[strstrDict]

Have a chat conversation with an LLM.

Arguments

  • model_cid: CID of the LLM model to use
  • messages: List of chat messages, each with 'role' and 'content'
  • inference_mode: Mode of inference, defaults to VANILLA
  • max_tokens: Maximum tokens to generate
  • stop_sequence: Optional list of sequences where generation should stop
  • temperature: Sampling temperature (0.0 = deterministic, 1.0 = creative)
  • tools: Optional list of tools the model can use
  • tool_choice: Optional specific tool to use
  • max_retries: Maximum number of retries for failed transactions

Returns

Tuple[str, str, Dict]: Transaction hash, model response, and metadata

Raises

  • RuntimeError: If SDK is not initialized

Llm completion

python
def llm_completion(model_cid: opengradient.types.LLM, prompt: str, inference_mode: str = 0, max_tokens: int = 100, stop_sequence: List[str| None = None, temperature: float = 0.0, max_retries: int | None = None) ‑> Tuple[strstr]

Generate text completion using an LLM.

Arguments

  • model_cid: CID of the LLM model to use
  • prompt: Text prompt for completion
  • inference_mode: Mode of inference, defaults to VANILLA
  • max_tokens: Maximum tokens to generate
  • stop_sequence: Optional list of sequences where generation should stop
  • temperature: Sampling temperature (0.0 = deterministic, 1.0 = creative)
  • max_retries: Maximum number of retries for failed transactions

Returns

Tuple[str, str]: Transaction hash and generated text

Raises

  • RuntimeError: If SDK is not initialized

Login

python
def login(email: str, password: str)

Login to OpenGradient.

Arguments

  • email: User's email address
  • password: User's password

Returns

dict: Login response with authentication tokens

Raises

  • RuntimeError: If SDK is not initialized

New workflow

python
def new_workflow(model_cid: str, input_query: Dict[str, Any] | opengradient.types.HistoricalInputQuery, input_tensor_name: str, scheduler_params: Dict[strint| opengradient.types.SchedulerParams | None = None) ‑> str

Deploy a new workflow contract with the specified parameters.

This function deploys a new workflow contract and optionally registers it with the scheduler for automated execution. If scheduler_params is not provided, the workflow will be deployed without automated execution scheduling.

Arguments

  • model_cid: IPFS CID of the model
  • input_query: Dictionary or HistoricalInputQuery containing query parameters
  • input_tensor_name: Name of the input tensor
  • scheduler_params: Optional scheduler configuration: - Can be a dictionary with: - frequency: Execution frequency in seconds (default: 600) - duration_hours: How long to run in hours (default: 2) - Or a SchedulerParams instance If not provided, the workflow will be deployed without scheduling.

Returns

str: Deployed contract address. If scheduler_params was provided, the workflow will be automatically executed according to the specified schedule.

Read workflow history

python
def read_workflow_history(contract_address: str, num_results: int) ‑> List[Dict]

Gets historical inference results from a workflow contract.

Returns

List[Dict]: List of historical inference results

Read workflow result

python
def read_workflow_result(contract_address: str) ‑> Dict[strstr | Dict]

Reads the latest inference result from a deployed workflow contract.

This function retrieves the most recent output from a deployed model executor contract. It includes built-in retry logic to handle blockchain state delays.

Returns

Dict[str, Union[str, Dict]]: A dictionary containing: - status: "success" or "error" - result: The model output data if successful - error: Error message if status is "error"

Raises

  • RuntimeError: If OpenGradient client is not initialized

Run workflow

python
def run_workflow(contract_address: str) ‑> Dict[strstr | Dict]

Executes the workflow by calling run() on the contract to pull latest data and perform inference.

Returns

Dict[str, Union[str, Dict]]: Status of the run operation

Upload

python
def upload(model_path, model_name, version)

Upload a model file to OpenGradient.

Arguments

  • model_path: Path to the model file on local filesystem
  • model_name: Name of the model repository
  • version: Version string for this model upload

Returns

dict: Upload response containing file metadata

Raises

  • RuntimeError: If SDK is not initialized

Classes

CandleOrder

class CandleOrder(*args, **kwds)

Enum where members are also (and must be) ints

Variables

  • static ASCENDING

  • static DESCENDING

CandleType

class CandleType(*args, **kwds)

Enum where members are also (and must be) ints

Variables

  • static CLOSE

  • static HIGH

  • static LOW

  • static OPEN

  • static VOLUME

HistoricalInputQuery

class HistoricalInputQuery(base: str, quote: str, total_candles: int, candle_duration_in_mins: int, order: CandleOrder, candle_types: List[CandleType])

HistoricalInputQuery(base: str, quote: str, total_candles: int, candle_duration_in_mins: int, order: opengradient.types.CandleOrder, candle_types: List[opengradient.types.CandleType])

From dict

python
def from_dict(data: dict) ‑> opengradient.types.HistoricalInputQuery

Create HistoricalInputQuery from dictionary format

To abi format

python
def to_abi_format(self) ‑> tuple

Convert to format expected by contract ABI

Variables

  • static base : str

  • static candle_duration_in_mins : int

  • static candle_types : List[opengradient.types.CandleType]

  • static order : opengradient.types.CandleOrder

  • static quote : str

  • static total_candles : int

InferenceMode

class InferenceMode()

Variables

  • static TEE

  • static VANILLA

  • static ZKML

LLM

class LLM(*args, **kwds)

Enum for available LLM models

Variables

  • static DOBBY_LEASHED_3_1_8B

  • static DOBBY_UNHINGED_3_1_8B

  • static LLAMA_3_2_3B_INSTRUCT

  • static META_LLAMA_3_1_70B_INSTRUCT

  • static META_LLAMA_3_8B_INSTRUCT

  • static QWEN_2_5_72B_INSTRUCT

LlmInferenceMode

class LlmInferenceMode()

Variables

  • static TEE

  • static VANILLA

SchedulerParams

class SchedulerParams(frequency: int, duration_hours: int)

SchedulerParams(frequency: int, duration_hours: int)

From dict

python
def from_dict(data: Dict[strint| None) ‑> opengradient.types.SchedulerParams | None

Variables

  • static duration_hours : int

  • static frequency : int

  • end_time : int

TEE_LLM

class TEE_LLM(*args, **kwds)

Enum for LLM models available for TEE execution

Variables

  • static META_LLAMA_3_1_70B_INSTRUCT

OpenGradient 2025